Multiple sediment contributions in the southern Lesser Antilles arc

M.F. THIRLWALL

Earth Sciences, Royal Holloway Univ. London, Egham TW20 0EX, UK (M.Thirlwall@gl.rhul.ac.uk)

Lavas from the southern Lesser Antilles have long been recognized to have a large sediment isotopic and chemical signature, in part incorporated within the arc crust, based on AFC relationships and elevated $\Delta^{18}O$ [1]. New Hf and double spike Pb isotope data show that the most isotopically depleted lavas in St Vincent and Grenada have Hf-Nd isotopic signatures similar to Atlantic E-MORB but elevated $^{187}Sr/^{86}Sr$, $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{204}Pb$. These are also the most magesian in their respective sample groupings, have mantle-like $\delta^{18}O_{cpx}$ and thus probably have not undergone major interaction with the arc crust. Crustal contamination reduces $\Delta^{18}O_{cpx}$, Hf and Nd isotope ratios. In Grenada, this isotopic signature is present in C-series lavas having Nd/Hf and Nd/Zr 2-3x MORB ratios and Ce/Pb>25. Coupled with MORB-like Zr contents, the low Nd/Zr would usually be taken to imply preferential LREE addition to the magma sources, while the high Ce/Pb ratios ought to imply no sediment contribution to the magma source. In contrast, isotopically similar samples in St Vincent have normal mantle Nd/Zr and low Ce/Pb (~9). The elevated $^{207}Pb/^{206}Pb$ and $^{208}Pb/^{204}Pb$ cannot realistically be derived from anywhere other than subducted seawater (85% of pre-LG M corals, <150 ka, have $\delta^{18}O_{cpx}$ unbiased towards highstands).

The timings of sea level change during the last glacial cycle, from U/Th dating of submerged corals: Results from IODP expedition 310 “Tahiti sea level”

ALEXANDER L. THOMAS*, GIDEON M. HENDERSON1, PIERRE DESCHAMPS2, YUSUKE YOKOYAMA3, EDOUARD BARD2,4, BRUNO HAMELIN2, NICOLAS DURAND2 AND GILBERT CAMOIN2

1Department of Earth Science, Parks Road, Oxford, OX1 3PR, United Kingdom (*correspondence: alext@earth.ox.ac.uk)
2Europôle Méditerranéen de l’Arbois, CEREGE, UMR CNRS 6635, BP 80, F-13545 Aix-en-Provence Cedex 4, France
3Department of Earth and Planetary Sciences, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan
4Chaire d’évolution du climat et de l’océan, Collège de France, Europôle Méditerranéen de l’Arbois, F-13545 Aix-en-Provence Cedex 4

U-Th dating of Pre-Last Glacial Maximum (LGM) corals, drilled during IODP Expedition 310 “Tahiti sea level”, has provided new data about the timing and magnitude of sea level prior to the last deglaciation. Drilling during Expedition 310 recovered 632 m of core (at 57.5% conventional recovery) from 37 drill holes. Of these 37 holes 28 penetrated material beneath the postglacial reef sequel. In contrast to previous onshore drilling [1], the pre-LGM material recovered during 310 has provided fossil corals that have not suffered significant alteration. Much of the pre-LGM material recovered is aragonitic (40% of pre-LGM corals screened by XRD have <1% calcite), and gives $\delta^{234}U$ close to modern seawater (85% of pre-LGM corals, <150 ka, have $\delta^{234}U$ between 138 and 150).

The slow subsidence of Tahiti, and the depths of the holes drilled during Expedition 310 has led to the recovery of Pre-LGM material that is representative of sea level lowstands. Thus, results from Tahiti provide a useful complement to existing records of sea level from corals which are typically biased towards highstands.

Pristine pre-LGM samples provide constraints on three periods – MIS3; MIS6; and the start of the penultimate deglacial. MIS 3 samples support evidence for rapid change in seal level during this period. Corals recovered from marine isotope stage 6 constrain the magnitude of the deglacial sea level rise at the penultimate deglacial. The timing of start of this deglacial is constrained by a series of corals that suggest a reef drowning event ~90m below sea level.